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Abstract. The energy function E ( A )  of a quantum system with Hamiltonian H ( A ) =  
&+AH, is determined by an analytical iterative procedure which yields a rich variety of 
functional forms. The wavefunction iterates include the solutions of Rayleigh-Schrodinger 
perturbation theory as well as some additional functions, all of which may be obtained 
sequentially by standard analytical techniques. At each step, an arbitrary (A-dependent) 
constant may be chosen freely so as to improve the results of low-order iterates, thereby 
enhancing the convergence of the procedure. 

1. Introduction 

Traditionally, bound-state eigenfunctions and energy eigenvalues of most quantum 
mechanical systems have been calculated by variational or  perturbation procedures. 
For a very small number of problems, exact (analytic or  numerical) solutions a re  
available, and these solutions serve as natural initial (or  zero-order) approximations 
for other, more complicated, systems. There a re  also well defined iterative procedures 
for improving the accuracy of an initial (possibly crude) approximation, but they have 
not been exploited greatly in the present context, although the partitioning technique 
(see, fo r  example, Lowdin 1982) leads naturally to  an iterative solution of 
Schrodinger’s equation. The need for numerical work in the iterative solution of the 
equations of Brillouin-Wigner ( BW) perturbation theory (PT) probably explains the 
general preference for Rayleigh-Schrodinger ( RS) PT, which avoids iteration. 

In the present work, we present a very simple iterative procedure for obtaining 
bound-state solutions for a system with Hamiltonian H ( A )  = Ho + AH,, and compare 
with the  results of RSPT. The new procedure does not involve numerical iteration, 
even though our equations are similar, in some respects, to those of BWPT in differential 
form (Byers Brown and Meath 1964). It should, therefore, be viewed as a generalised 
RSPT, with the advantage that it can yield a variety of functional forms of the energy 
in a natural manner. 

2. Iterative solution of Schrodinger’s equation 

We treat a completely general system, with Hamiltonian H and seek a bound state 
eigenfunction $ and eigenvalue E. Assuming that we have an approximation $,, t o  rL. 
obtained by any means whatsoever, (including physical intuition!), we construct an 
effective Hamiltonian Ho with normalised eigenfunction $o and eigenvalue Eo, so that 

(1) ( Ho - Eo) $0 = 0 ( $ o l ~ o )  = 1. 
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We now define an effective perturbation HI by means of 

HI = H - H ,  ( 2 )  

and, in order to facilitate comparisons with RSPT, we consider henceforth the generalised 
Hamiltonian H(A), where 

H ( A )  =Ho+AHl. (3) 

Thus, A may be regarded as a dummy variable to be set equal to unity at the end of 
the calculations, but the procedure clearly applies if the physical Hamiltonian H ( A )  
contains a natural parameter A, provided that Ho has a known solution. 

We now assume that the required solution of H ( A )  can be written 

c L ( A ) = c L o + A 4 ( A ) ,  E ( A )  =Eo+A&(A) (4) 

and so obtain from Schrodinger's equation the equivalent forms 

( H -  E ) +  +(HI - E ) &  = 0 ( 5 )  

In equations ( 5 )  and (6),  the A-dependence of H, E, 4 and E has not been written 
explicitly. Here, and in the following, only operators, energies and functions with 
subscripts are independent of A ; all other quantities are, in principle, A-dependent. 

Equation ( 5 )  implies that 4 is arbitrary to within a multiple of $, and yields (since 
H is necessarily Hermitian) 

E =(cLIHllcL")/(lLlcL") (7) 

Alternative forms of E are now obtained from (6) or (7) (assuming that Ho and HI 
are also Hermitian operators) 

E =[El  +~($olHil4)I/[l + ~ ( $ n l 4 ) I  (8a)  

=El  + A ( $ o I H i - E I 4 )  ( 8 b )  

El = ( $ O l H I I c L " ) .  (9) 

where E ,  is the RSPT first-order energy coefficient 

Equations ( 5 )  to (8) are all exact, and it is easy to show (see appendix) that ( 8 b )  
can be rewritten in the form E = f ( ~ ) ,  suggesting solution by iteration. 

We now solve equation (6) by iteration, replacing it by the sequence 

(Ho - Eo) 4"+*) + (HI - E ( ' + ' ) ) (  $0 + A4"') = 0 ( i = o , l ,  . . . )  (10) 

so that, analogous to equations (8), we have 

Clearly, when c#I( '+~'  = 4"' the converged solution of (10) coincides with the exact 
solution 4 of ( 5 ) .  Note that E ( ' + "  is known, so that equation (10) must be solved 
only to determine c$('+"; this is just as in RSPT. 
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3. Comparison with other procedures 

To facilitate comparison with other forms of PT, we now rewrite 

4(i) = i A k - 1  ( k )  & ( i + l ) ,  "f A k - 1 7 7 ( k )  X ?  
k = l  k = I  

where, for convenience, we have chosen 4'') = 0. In place of ( l o ) ,  we obtain 

(Ho- Eo)*(]'+ (HI - T p ) $ o  = 0 ( 1 3 a )  

and 

(H,-E,)*"+L'+(H,-&'I')*'i'= 7711+1) ($o+ k = l  i A k P )  (is 1 ) .  ( 1 3 b )  

The A-dependence of all ,yIk' and qIk' for k 2 2  follows a t  once from (13b) .  The  
corresponding RSPT equations, based on Taylor series for $ ( A )  and E(A) .  (with 
A-independent coefficients), a re  

(Ho - E,) $ I +  ( H 1 -  El 1 $0 = 0 ( 1 4 a )  

and 

Finally, the differential BWPT equations, which a re  easily obtained from the formal 
expansions 

(note that $ ( k )  and E ( k '  are  A-dependent) are  

( Ho - Eo - A E )  $(" + HI $0 = E ( I '  $0 ( 1 6 a )  

( H o -  Eo- AE)$"+"+H,$"' = ( i s  1 )  ( 1 6 b )  

and 

(Byers Brown and Meath 1964). At  first sight, these are much simpler equations than 
either ( 1 3 )  o r  ( 1 4 )  and the convergence of BWPT is often superior t o  that of RSPT. 
However, these BW equations can only be solved in terms of an unknown parameter 
E which must be obtained finally by a numerical iterative procedure, whereas our  
equations ( 1  3 )  are solved directly by any procedure suitable for the conventional RSPT 
equations ( 1 4 ) .  In the following, we assume that the RSPT solutions are known, and 
have been normalised according to ('intermediate normalisation') 

(IclollLi) = Sol 9 SO that =($o(Hll$i) (i20). ( 1 7 a )  
As we show below, it is possible to  choose the normalisation of the solutions x'j' in 
many different ways, including 

($olx'") = 0, so that 77('+') = ($olH1/~'i') ( i s l )  ( 1 7 6 )  

( + o l $ ( 9  = 0 ,  so that E ' " ' '  = ($olHll$(')) (iz 1 ) .  ( 1 7 c )  

and finally, we make the corresponding choice for the BWPT solutions: 
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Thus, we see that there a re  some formal similarities between the energy functions of 
the different procedures. 

4. Solutions to the low-order equations 

W e  note first that equations ( 1 3 4  and (14a) a re  identical since well behaved solutions 
exist if and only if 

d l '  = (901H119o) = El. (18) 

x"' = + k"'&, (19) 

It now follows that the first-order iterate x(l)  has the form 

where the RSPT solution G I  is normalised as in ( 1 7 4 ,  and k"' is an arbitrary constant, 
which may be A-dependent. Thus, we have (using equations (12), ( l l a )  and (13b) 
for appropriate i )  

El + & A / (  1 + k"'A). (tjo14"') = k"', & l 2 )  = (20) 

In general, equation ( l l a )  shows that & ( ' + I )  has the form of a [N+ 1 / N +  11 Pad6 
approximant if 4") has the form of a polynomial of degree N in A with A-independent 
coefficients, a result which has been exploited by Amos (1978). However, our result 
is richer, since k'" (and its higher-order counterparts) are not A-independent. 

Before considering some possible choices of k'", let us calculate the second-order 
iterate x'". Explicitly, we find 

(21) (Ho - EO)x'*' + (HI - E,)x" ' = E,( $0 + Ax" ))/ ( 1 + k" ' A  ) 

,y(2) = (92+ k"'+, + k"'+,) + F e 3 ,  (22) 

(H"-E")e3=E291, (0,190) = 0 (23) 

with solution 

p = A/(1+ k'"A). 

Here, rCIz is the usual second-order RSPT solution, O 3  satisfies 

and k"' is a (possibly A-dependent) constant. Note that x'" is A-dependent (through 
0,) euen if we set both the k"' equal t o  zero. In general, we now have 

( ~ ) ~ l ~ ' * ' )  = k'"+ kc2'A ( 2 4 4  
and 

where use has been made of an interchange theorem (cf Hirschfelder et af 1964) based 
on equations (14a) and (23) to eliminate e3 from the expression ( l l a )  for E ( ~ ' .  

Furthermore, since E3 may be calculated from the RSPT formula 

(25) 
we see that E ( ~ '  requires only tjo and ICI1, so that the iterated energy through third 
order requires the iterated function through firstorderonfy. Even so, note that E,+ 
contains a term of order A 4 ,  whereas the RSPT third-order partial sum for the energy 
terminates with E3A3. 

E3 = (9llHl -El 191) 
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5. Higher-order solutions 

The calculation of higher-order x"' and E("' proceeds analogously, but the details 
need not be given here. However, each x'" will contain a new arbitrary constant, k'", 
so that in general, 4") will contain i arbitrary constants. Furthermore, if we assume 
for simplicity that all the k"' are zero (this is clearly a possible choice, though certainly 
not the optimal one), A4'2' and E ' ~ '  contain terms up to O(A3) so that (10) and ( l l a )  
imply that A4'3'  and E ( ~ )  contain terms up to O(A7); thus, in general, A4'" and E ( ' + ' )  

will contain terms up to O(A'), where s = 2'-1, with a strong implication that our 
iteration procedure is of second order. Further evidence of this is presented in the 
following sections. 

6. Choice of the arbitrary constants 

Provided that the iterative solution converges, our results must ultimately become 
independent of the constants k"). Nevertheless, it is of interest to examine the 
low-order iterates, in the hope that they may yield accurate results if the k'" are 
chosen appropriately. For simplicity, we consider E,+ A&'", and note the following 
possibilities. 

(1) (1),-14"')=0, so that k"'=O.  We obtain precisely the RSPT partial sum, E,+ 
EIA + E2A '. 

(2) ($O/Hl14"') =0,  so that k'"= - E 2 / E 1 .  This yields the [1/1] PadC approximant 

(3) k"' = -E3/  E2.  This yields the [2/ 11 PadC approximant Eo + El A + E2A2/ (1 - 
E3A/E2). We recall that E3 is available from equation (25), so that k") can be calculated 
once is known. 

EO + El A / (  1 -E2A/El) .  

(4) If 9,+A4'" is normalised to N, so that k"' satisfies 

(1 + k ' l ) ~ ) ~  = N - s l l h 2 ,  SI1 =(41l91) (26) 

we find that E ( ' )  is not a rational function of A. Here, N must be chosen appropriately 
for E"' to remain real. Conversely, if we make the natural choice N = 1, A must be 
restricted. Silverman (1981) has suggested on other grounds that ST;'* may provide 
a good estimate of the radius of convergence of the RSPT Z-'-expansion of the energy 
for atoms. Here, as with the following choices, k") is A-dependent. 

( 5 )  For the ground state of H ( A ) ,  the elementary variational upper bound based 
on the trial function & + A $ , ,  

E v a , (  90 + A CL I ) = ( $0 + A $ 1 IHo + AH1 I 90 + A $)/ ( 90 + A 91 190 + A $1 ) (2 7 a  

(27b) = Eo + EIA + ( E2A + E3A 3) / (  1 + SI I A  2, 

is reproduced by E,+ AE'" if we make the choice 

k"' = -( E3 - E2Sl I A )/ (E2 + E3A ). (28) 

(6) An improved variational upper bound based on the trial function $,+ vA+l is 
(Dalgarno and Stewart 1961) 

Evar(cLo+TA+l)=E,+ElA +qE2A2 (29) 
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where 77 is a variational parameter which satisfies 

A S ,  , 7 + ( 1 - E ~ A  / E?) 7 - 1 = 0. 

The upper bound (29) is reproduced by Eo+A~ '2 '  by choosing 

k'"= (1  - 7)/7A. ( 3 1 )  

(7)  If A is a natural (rather than a dummy) parameter, a semi-empirical procedure 
may be followed. Thus, if E ( A )  is known accurately for some isolated values of A ,  
k"' may be chosen so as to reproduce these values exactly. Since k"' is A-dependent, 
a number of known values of E ( A )  (not merely one) may be reproduced. Furthermore, 
if the asymptotic behaviour of E ( A )  is known to involve inverse fractional powers of 
A,  these may be introduced naturally into k"'. 

All these procedures may be extended to higher-order iterates, but there are 
successively more constants k"' at our disposal. It is possible to choose some of these 
so that successive energy iterates are equal ( E ( ' + ' )  = F (') ) but we emphasise that this 
choice does not ensure equality of the corresponding function iterates (4"' # I#J"-"). 

A more satisfactory possibility is the following. 

7. Variational energy bounds 

If we regard &+7A4"' as a trial function, we may calculate the variational energy 
(which is a rigorous upper bound for ground states) 

E,,,(&+ 7A4"') = ( E o + h ~ ( ' + ' ) )  + A [ ( E I  - E ( ' + ' ) ) (  1 - 7)*+ AA"+"72]/N('' ( 3 2 )  

and 
A([+Ij  = (#,(l)lH, - F ( ' + l )  1 + A #J ( ") - ( 4  " 1  HI - E ( '' I $0 + A 4 ' I -  ' )). ( 3 3 b )  

Using equation (10) for two successive values of i, we obtain via an interchange theorem: 

#J( ' ) IH,  - E"'/+o+Ac#J"-") ( 3 4 a )  A ( I + l )  

or, on using equation (12), 

( 3 4 b )  
From equation ( 3 4 a ) ,  when c$('+'' = 4"'= #J (i.e., when the process has converged), 
A('+' )  = 0 and E,,, attains its minimum when 7 = 1 ,  giving the equality 

AII+ l )  = ),~(x('+l)lHl - F ( ' ) ~ t , ! J o + ~ # J ( ' ~ ~ ~ ) ~  

E t a , ( + "  + A41 = EO + ( 3 5 )  
This is as expected, since Go+ A#J is the exact solution. But if 4'"'' # 4"' )  equation 
( 3 4 b )  shows that A('+' )  is O(A') and may be small, particularly if A << 1 and i is large. 
If A('+' )  is sufficiently small and 7 is varied in equation ( 3 2 ) ,  we obtain 7 = 1 and 

Evar(&,+Aq5(") -- Eofhs"+" .  ( 3 6 )  
(The error involved in this approximation is A2A"+"/N(",  which may be calculated 
using (33a ,  b )  if desired.) 
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But it may be possible to choose the constants k'"( j = 1 , .  . . , i) so that A'"' = 0, 
in which case (36) becomes an exact equation, and the resulting 4") (for any i) then 
satisfies a necessary (but not a sufficient) condition on 4. For example, when i =  1, 
A'2' may be calculated from (346) using ( 2 2 ) ,  and the condition A(2' = 0 yields explicitly 

E,+ k'"E2-pE2S11=0. (37) 

This is a quadratic equation for k") (we recall from equation (22) that p = 
A / ( l + k " ' A ) )  with solutions identical with those of equations (30) and (31). This 
result is a consequence of the fact that $ o + A ~ ( l )  is an optimised linear combination 
of $o and in this case. If the same procedure is followed with the next iterate, 
$' + and k'2' may be chosen so that A(3)  = 0, we are in some sense constructing 
an optimal linear combination of $o and 4(2) but with k(" still arbitrary. (If desired, 
each of the k'" may be chosen so that + o + A ~ ( r )  makes (36) an equality, but this is 
not necessary.) 

An important consequence of this result is the following. The energy iterate 
E 0 + A ~ ( ' + ' )  involves A4'" which in turn contains A'$, (as well as terms of higher order 
in A ) ;  and so, by a well known theorem, Ev,,($o+h4"') contains A2z11E21+1, where 
E2r+l  is the appropriate RSPT coefficient. Thus, each energy iterate automatically 
contains contributions from two additional terms of RSPT. 

8. An alternative 4"' 

In equation (12), we made the natural choice of 4") = 0, mainly so as to simplify our 
comparisons with other forms of PT. As a very simple alternative, we might consider 

$0 2 (38) 4(0) = p o l  

which leaves E " )  invariant, and leads to 

4") = (1 + c ' o ' A ) $ l  + k ' ( l ) $ o  

and 

E ' " = E ~ + E ~ A ( ~  + f ' o ' A ) / ( " f ' ' ' A ) .  
Our earlier choice of 4") is thus seen to be a special case (with c ( " = O ) ,  and it is 
clear that if the constants e(') and e(') are chosen so that expressions (20) and (39b) 
for E ( ' )  coincide, then 

k ( ' ) =  ( c ( ' ) - c ( 0 ) ) / ( l + c ( O ) h ) .  (40) 
Thus, a suitable choice of the constant !dl) (which is here explicitly h-dependent even 
if and e(')  are A-independent) may serve to improve the result even if the initial 
choice of g5") is less than optimal. 

9. A simple application: the energies of four-electron atoms 

We now illustrate the efficacy of the procedures described here, and confine our 
attention to the simplest non-trivial energy iterate, E + A E ' ~ ) .  A Z-expansion RSPT 

calculation of the ls22s2 'S, ls2 2s2p 'P and 1s' 2p2 ' S  states of four-electron atoms 
(Watson and O'Neil 1975) provides approximate E, values up to n = 10, but we will 
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employ only the first two variationally determined coefficients, E2 and E3,  which are 
presumably more accurate than the higher E, coefficients. For the ls22s2 ' S  state, a 
more accurate E2 is available (Watson and O'Neil 1975) but not of E3 and for 
consistency, we use the less precise value of E2 also. In this problem, A = 2-' is a 
natural expansion parameter and H,, is a sum of hydrogenic Hamiltonians which is 
explicitly soluble, so that Eo and E ,  are known exactly. 

In table 1, we present total non-relativistic energies calculated from the formula 
E = Z 2 E ( A ) ,  where 

E ( A )  = E,+ Elh + EzA '( 1 - 2E3A/ E2)-1'2 (41) 
which corresponds to choosing k" )  according to 

( 1 +  k"'A)=(1-2E3A/Ez)' '2. 

Table 1. Non-relativistic energies ( - E )  of four-electron atoms (in au). 

1s22s2 ' S  4 
5 
6 
7 
8 
9 

10 

ls22s2p 'P" 4 
5 
6 
7 
8 
9 

10 

ls22p2'S 4 
5 
6 
7 
8 
9 

10 

- 
24.3099 
36.5036 
51.1951 
68.3858 
88.0761 

110.2664 

- 
23.9324 
35.9998 
50.5648 
67.6295 
87.1946 

109.2599 

- 
35.5692 
50.0218 
66.9735 
86.4257 

108.3787 

14.6387 
24.3241 
36.5115 
51.1999 
68.3889 
88.0784 

110.2681 

14.4226 
23.9705 
36.0252 
50.5836 
67.6444 
87.2066 

109.2699 

14.2658 
23.6757 
35.6044 
50.0429 
66.9871 
86.4350 

108.3854 

14.6358 
24.3223 
36.5102 
51.1990 
68.3883 
88.0778 

110.2677 

14.4269 
23.9731 
36.0269 
50.5849 
67.6453 
87.2074 

109.2705 

14.2770 
23.6821 
35.6085 
50.0457 
66.9892 
86.4366 

108.3866 

14.6665t 
24.341 3 t  
36.53341 
5 1.2128$ 
68.40961. 

14.47251 
23.9603 
36.0628t 
50.5697 
67.68431 
87.1932 

109.2572 

14.2678 
23.7150 
35.6417 
50.0871 
67.0366 
86.4873 

108.4425 

(1) RSPT 10th-order sums (Watson and O'Neil 1975). 
(2) Screening approximation, equation (43). 
(3) Approximant (41). 
(4) Variational calculations from tSims and Whitten (1973), fWeiss (1961) and Hibbert 
(1974). 

Thus, (41) correctly reproduces the Taylor expansion of E ( A )  up to the third-order 
energy term, and contains no empirical parameters. The square root is suggestive of 
quadratic Pad6 approximants introduced by Shafer (1974) and reviewed recently by 
Common (1982), but we make no theoretical claim for the particular form (41). 
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For comparison, we also list values obtained from the frequently used screening 
approximation (Dalgarno and Stewart 1960) : 

E ( Z )  = EoZ2 + EIZ + E2 + E3/(Z-  (T) (43) 

in which the screening constant (T is traditionally chosen equal to -El/2Eo. This 
procedure corresponds to making the choice 

k‘ ’) = - E3/[ E ,  + (E3 - Ezm)  A ]  (44) 

which seems very different from (42). Although neither (41) nor (43) (with U =  

-E1/2Eo) provides accurate estimates of the higher-order energy coefficients E, 
( n  3 4 ) ,  nevertheless both (41) and (43) reproduce the RSPT partial sums of Watson 
and O’Neil(l975) for sufficiently high Z. For low Z, both (41) and (43) (which contain 
only four coefficients) yield more accurate energies than the RSPT sums correct to tenth 
order! Table 1 contains these sums, as well as results of some refined variational 
calculations (Sims and Whitten 1973, Weiss 1961, Hibbert 1974). 

There is, in general, little to choose between (41) and (43) for the ions and states 
considered here, and it may be fortuitous that the calculated energies are upper bounds 
to the most accurate variational values. In this connection, it should be noted that 
Hibbert’s (1974) wavefunctions contain no K-shell correlation, and his values of -E 
should probably be increased by approximately 0.045 au (the average difference 
between the ls22sz ‘S energies of Weiss and Hibbert) to obtain more reliable estimates 
of the non-relativistic energy. 

The accuracy obtained in this example may be expected to be quite typical of 
atomic isoelectronic sequences (since the choice k‘” = 0 usually provides a satisfactory 
approximation for high Z).  It remains to be seen how reliable formulae such as (41), 
and (43) can be in other cases. 

Acknowledgments 

The helpful comments of a referee have, it is hoped, improved the presentation of this 
work. It was begun during a period of Sabbatical leave spent as a Visiting Fellow at 
Clare Hall, Cambridge, and was stimulated by discussion with members of and visitors 
to the Department of Theoretical Chemistry, in particular, Professors A D Buckingham, 
FRS and S F O’Shea. The kind hospitality of the Department and of the President 
and Fellows of Clare Hall are gratefully acknowledged. 

Appendix 

The solution of equation (5) of the text may be written formally in terms of the 
resolvent operator R ( E )  defined by 

(AI? R ( E )  = ( E ~  + A E  - H)-’ 
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Thus, equation ( 8 b )  of the text can be written 

which is clearly of the form 

E = f ( E ) .  

However, this equation is not immediately useful for calculating E and indeed, it is 
generally necessary to approximate the resolvent R ( E )  in order to make progress. 

If R ( E )  is rewritten in terms of 

Ro( E ) = (Eo + E - H0)- ', (A61 

R ( E )  =R,(E) +AR,(E)H,R(E).  (A71 

R ( E )  = [ 1 - ARo( E)H~] -~RO(  E )  (A81 

it is easily shown that 

This may be iterared, or solved formally with the result that 

and using this form of R ( E ) ,  equation (A4) yields BWPT. On the other hand, if R ( E )  
is rewritten in terms of 

Ro(0) = (E0-HJ1 (A91 

R ( E )  = Ro(O) + ARo(O)(H~-E)R(E) (A10) 

R ( E )  = [ 1 - ARO(O)(Hl- E)]-~RO(O) (A1 1) 

The handling of all these inverse operators requires care (see, for example, Lowdin 

so that 

with solution 

equation (A4) yields RSPT. 

1982), whereas our differential equation approach is completely straightforward. 
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